Binary Search Tree

Binary Search Tree

Binary Search Tree is a binary tree in which every node contains only smaller values in its left subtree and only larger values in its right subtree.

1. Everything in a nodes seft subtree ss smaller than the node's value
2. Everythingin a nodés right subtree is bigger than the node's value
3. The left and right subtree each must also be a binary search tree

Operations on a Binary Search Tree

1. Insertion
2. Search
3. Deletion
4. Pre-order Traversal
5. In-order Iraversal
6. Post-order Traversal

Binary Search Tree Creation

Binary Search Tree is a binary tree in which every node contains only smaller values in its left subtree and only larger values in its right subtree.
Construct a Binary Search Tree (BST) for the following sequence of numbers-

$$
13,9,5,12,16,19
$$

Step 1:

13 Root

Step 2:

$13,9,5,12,16,19$

Step 3:

Insert or add 5: As $5<13$, so insert 5 to the left of 13. As $5<9$, so insert 5 to the left of 9 .

$13,9,5,12,16,19$

Step 5:

Insert or add 16
As $16>13$, so insert 16 to the right of 13

13, 9, 5, 12, 16, 19
Step 6:
insert or add 19
As $19>13$, so insert 19 to the right of 13 As $19 \Rightarrow 16$, so insert 19 to the right of 16

Binary Search Tree is a binary tree in which every node contains only smaller values in its left subtree and only larger values in its right subtree.

$$
6,3,9,1,4,8,11
$$

Searching element in Binary Search tree

- Compare the element with the root of the tree.
- If the item is matched then return node value:
- Otherwise check if item is less than the element present on root if so then move to the left sub-tree:
- If not, then move to the right subtree
- Repeat this procedure recursively untiomatch found:
- If element is inot found then return NUL:

Search 21

Ctep 1. Compare 21 with the root 1:. $21>20$ so move to the right subitree

Compare 21 with the root(25) $21<25$ so move to the left sub-tree.

Step 3: Now inter sub trea 2 sarioen Compare 21 with the root(21) $21=21$ Match(found) return 21

root=20

Search 30
$30>20$ (search in right sub tree)
In Right sub tree root=25 Search 30 $30>25$

Right sub tree root $=37$
Search 30 30<37.

In Left sub tree root=30
Search 30
$30=30$ (found)

